Перевод: со всех языков на английский

с английского на все языки

filament temperature

  • 1 температура нити накала

    Русско-английский словарь по микроэлектронике > температура нити накала

  • 2 температура нити накала

    1. filament temperature

     

    температура нити накала

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > температура нити накала

  • 3 пучок вихревых нитей

    Русско-английский научный словарь > пучок вихревых нитей

  • 4 температура на отоплителна нишка

    елн.
    filament temperature
    елн.
    filament temperatures

    Български-Angleščina политехнически речник > температура на отоплителна нишка

  • 5 температура нити накала

    Универсальный русско-английский словарь > температура нити накала

  • 6 Glühfadentemperatur

    Glühfadentemperatur f filament temperature

    Deutsch-Englisch Wörterbuch der Elektrotechnik und Elektronik > Glühfadentemperatur

  • 7 Coolidge, William David

    SUBJECT AREA: Electricity, Metallurgy
    [br]
    b. 23 October 1873 Hudson, Massachusetts, USA
    d. 3 February 1975 New York, USA
    [br]
    American physicist and metallurgist who invented a method of producing ductile tungsten wire for electric lamps.
    [br]
    Coolidge obtained his BS from the Massachusetts Institute of Technology (MIT) in 1896, and his PhD (physics) from the University of Leipzig in 1899. He was appointed Assistant Professor of Physics at MIT in 1904, and in 1905 he joined the staff of the General Electric Company's research laboratory at Schenectady. In 1905 Schenectady was trying to make tungsten-filament lamps to counter the competition of the tantalum-filament lamps then being produced by their German rival Siemens. The first tungsten lamps made by Just and Hanaman in Vienna in 1904 had been too fragile for general use. Coolidge and his life-long collaborator, Colin G. Fink, succeeded in 1910 by hot-working directly dense sintered tungsten compacts into wire. This success was the result of a flash of insight by Coolidge, who first perceived that fully recrystallized tungsten wire was always brittle and that only partially work-hardened wire retained a measure of ductility. This grasped, a process was developed which induced ductility into the wire by hot-working at temperatures below those required for full recrystallization, so that an elongated fibrous grain structure was progressively developed. Sintered tungsten ingots were swaged to bar at temperatures around 1,500°C and at the end of the process ductile tungsten filament wire was drawn through diamond dies around 550°C. This process allowed General Electric to dominate the world lamp market. Tungsten lamps consumed only one-third the energy of carbon lamps, and for the first time the cost of electric lighting was reduced to that of gas. Between 1911 and 1914, manufacturing licences for the General Electric patents had been granted for most of the developed work. The validity of the General Electric monopoly was bitterly contested, though in all the litigation that followed, Coolidge's fibering principle was upheld. Commercial arrangements between General Electric and European producers such as Siemens led to the name "Osram" being commonly applied to any lamp with a drawn tungsten filament. In 1910 Coolidge patented the use of thoria as a particular additive that greatly improved the high-temperature strength of tungsten filaments. From this development sprang the technique of "dispersion strengthening", still being widely used in the development of high-temperature alloys in the 1990s. In 1913 Coolidge introduced the first controllable hot-cathode X-ray tube, which had a tungsten target and operated in vacuo rather than in a gaseous atmosphere. With this equipment, medical radiography could for the first time be safely practised on a routine basis. During the First World War, Coolidge developed portable X-ray units for use in field hospitals, and between the First and Second World Wars he introduced between 1 and 2 million X-ray machines for cancer treatment and for industrial radiography. He became Director of the Schenectady laboratory in 1932, and from 1940 until 1944 he was Vice-President and Director of Research. After retirement he was retained as an X-ray consultant, and in this capacity he attended the Bikini atom bomb trials in 1946. Throughout the Second World War he was a member of the National Defence Research Committee.
    [br]
    Bibliography
    1965, "The development of ductile tungsten", Sorby Centennial Symposium on the History of Metallurgy, AIME Metallurgy Society Conference, Vol. 27, ed. Cyril Stanley Smith, Gordon and Breach, pp. 443–9.
    Further Reading
    D.J.Jones and A.Prince, 1985, "Tungsten and high density alloys", Journal of the Historical Metallurgy Society 19(1):72–84.
    ASD

    Biographical history of technology > Coolidge, William David

  • 8 напряжение

    напряже́ние с.
    1. мех. stress
    напряже́ние возника́ет — a stress arises
    вызыва́ть напряже́ние — generate a stress
    концентри́ровать напряже́ния — concentrate stresses
    распределя́ть напряже́ние — distribute a stress
    скла́дывать напряже́ния — combine stresses
    снима́ть напряже́ние — relieve [relax] a stress
    2. эл. voltage, tension
    выключа́ть напряже́ние — deenergize
    гаси́ть напряже́ние на рези́сторе — drop (some) voltage across a resistor
    компенси́ровать напряже́ние противонапряже́нием — buck [back off, back out] a voltage
    наводи́ть напряже́ние — induce voltage
    повыша́ть напряже́ние — step up voltage
    под напряже́нием — alive, live, energized
    понижа́ть напряже́ние — step down voltage
    преобразо́вывать напряже́ние в код — convert voltage to number
    прикла́дывать напряже́ние — apply voltage to, impress voltage on
    проверя́ть нали́чие напряже́ния на зажи́мах — check that voltage exists at terminals
    снима́ть ( выключать) [m2]напряже́ние — deenergize
    снима́ть напряже́ние (для использования, измерения и т. п.; не путать с выключа́ть напряже́ние) — tap off voltage
    стабилизи́ровать напряже́ние элк.брит. stabilize a voltage; амер. regulate a voltage
    амплиту́дное напряже́ние — peak voltage
    напряже́ние ано́да — ( радиолампы) брит. anode voltage; амер. plate voltage; (электроннолучевой трубки, кинескопа) anode voltage
    безопа́сное напряже́ние — safe stress
    бланки́рующее напряже́ние — blanking voltage
    напряже́ние бортово́й се́ти — ав. airborne [airplane-system] voltage; мор. ships system voltage; авто car-system voltage
    вну́треннее напряже́ние — internal [locked-up] stress
    напряже́ние возбужде́ния — excitation voltage
    напряже́ние вольтодоба́вки тлв.boost voltage
    напряже́ние впа́дины ( в туннельных диодах) — valley voltage
    напряже́ние в рабо́чей то́чке — quiescent [Q-point] voltage
    напряже́ние в то́чке максима́льной крутизны́ ( в туннельных диодах) — inflection-point voltage
    напряже́ние в то́чке ма́ксимума то́ка ( в туннельных диодах) — peak(-point) voltage
    входно́е напряже́ние — input voltage
    вы́прямленное напряже́ние — rectified voltage
    высо́кое напряже́ние — high voltage
    выходно́е напряже́ние — output voltage
    вя́зкостное напряже́ние — viscous stress
    напряже́ние гаше́ния — blanking voltage
    генера́торное напряже́ние — generator voltage
    напряже́ние гетероди́на — local-oscillator signal, local-oscillator frequency
    гетероди́нное напряже́ние ( не путать с напряже́нием гетероди́на) — injection [conversion] frequency (signal)
    гла́вное напряже́ние — principal stress
    напряже́ние двойникова́ния — twinning stress
    действи́тельное напряже́ние — true [actual] stress
    де́йствующее напряже́ние — r.m.s. voltage (effective voltage — уст.)
    динами́ческое напряже́ние — dynamic stress
    диффузио́нное напряже́ние — diffusion voltage
    напряже́ние доли́ны ( в туннельных диодах) — valley voltage
    едини́чное напряже́ние
    1. unit stress
    2. unit voltage
    напряже́ние зажига́ния (в газоразрядных приборах, напр. тиратроне) — firing potential, firing voltage
    зака́лочное напряже́ние — cooling [quenching] stress
    замедля́ющее напряже́ние — decelerating [retarding] voltage
    напряже́ние запира́ния — (в радиолампах, полупроводниковых приборах) cut-off voltage; ( в схемах) disabling voltage
    заря́дное напряже́ние — charging voltage
    напряже́ние зе́ркала испаре́ния тепл. — rate or evaporation per sq.m. of water surface
    знакопереме́нное напряже́ние — alternate stress
    напряже́ние и́мпульса обра́тного хо́да — flyback [retrace] pulse voltage
    напряже́ние искре́ния — ( без перехода в дуговой разряд) sparking voltage; ( с переходом в дуговой разряд) arcing voltage
    испыта́тельное напряже́ние — test voltage
    каса́тельное напряже́ние — tangential stress
    кольцево́е напряже́ние ( в тонких оболочках) мор.hoop stress
    напряже́ние коро́ткого замыка́ния — short-circuit voltage
    напряже́ние коро́ткого замыка́ния трансформа́тора — impedance voltage of a transformer
    лине́йное напряже́ние
    1. мех. linear stress
    2. эл. line voltage
    магни́тное напряже́ние — magnetic difference of potential m.d.p.
    напряже́ние на ано́де, като́де, ба́зе, колле́кторе и т. п. — plate, cathode, base, collector, etc. voltage
    напряже́ние нагру́зки — load voltage
    напряже́ние на зажи́мах исто́чника эдс — terminal voltage
    напряже́ние нака́ла — ( прямого) filament voltage; ( косвенного) beater voltage (допустимо filament voltage в обоих случаях)
    напряже́ние нака́чки (в лазерах, параметрических усилителях) — pump(ing) voltage
    напряже́ние насыще́ния ( в транзисторах) — saturation voltage
    номина́льное напряже́ние — rated [nominal] voltage
    напряже́ние обра́тного зажига́ния — fire-back voltage
    обра́тное напряже́ние полупр. — reverse [inverse] voltage
    объё́мное напряже́ние — volumetric stress
    одноо́сное напряже́ние — uniaxial stress
    окружно́е напряже́ние — hoop [tangential] stress
    операти́вное напряже́ние ( на станциях или подстанциях для управления переключением) — control voltage
    опо́рное напряже́ние — reference voltage, voltage reference
    осево́е напряже́ние — axial stress
    осесимметри́чное напряже́ние — axisymmetrical stress
    основно́е напряже́ние — basic stress
    оста́точное напряже́ние
    1. мех. residual stress
    2. эл. residual voltage
    отклоня́ющее напряже́ние ( в ЭЛТ) — deflection voltage
    напряже́ние относи́тельно земли́ — voltage to earth
    напряже́ние отпира́ния ла́мпы элк.cut-on voltage
    напряже́ние отпира́ния по пе́рвой, второ́й или тре́тьей се́тке элк. — control, screen or suppressor grid base
    напряже́ние отпира́ния по се́тке элк.grid base
    напряже́ние отража́теля ( в клистроне) — repeller voltage
    напряже́ние от самокомпенса́ции — extension stress
    напряже́ние отсе́чки — cut-off voltage; ( в полевом транзисторе) pinch-off voltage
    напряже́ние от торможе́ния — braking stress
    напряже́ние парово́го объё́ма — rate of evaporation per cu.m. of steam space
    перви́чное напряже́ние — primary voltage
    напряже́ние перебро́са — turnover voltage
    переключа́ющее напряже́ние — switching voltage
    напряже́ние перекры́тия изоля́ции — flashover voltage
    напряже́ние переме́нного то́ка — alternating [a.c.] voltage
    напряже́ние перехо́дного проце́сса — transient voltage
    напряже́ние пи́ка ( в туннельных диодах) — peak point voltage
    пи́ковое напряже́ние — peak voltage
    пилообра́зное напряже́ние — sawtooth voltage
    напряже́ние пита́ния — supply voltage
    пла́вающее напряже́ние ( в биполярных транзисторах) — floating voltage
    напряже́ние пове́рхности нагре́ва тепл.rate of evaporation
    напряже́ние пове́рхности нагре́ва по испарё́нной вла́ге тепл.overall rate of evaporation
    пове́рхностное напряже́ние — surface stress
    напряже́ние погаса́ния ( в газоразрядных приборах) — extinction potential, extinction voltage
    напряже́ние под нагру́зкой — load stress
    напряже́ние подсве́тки — intensifier voltage
    подфокуси́рующее напряже́ние элк.focusing voltage
    по́лное напряже́ние
    1. мех. combined [compound, composite] stress
    2. эл. total voltage
    поро́говое напряже́ние — threshold voltage
    напряже́ние постоя́нного то́ка — direct [d.c.] voltage
    постоя́нное напряже́ние ( неизменной величины) — constant [fixed] voltage
    предвари́тельное напряже́ние (напр. арматуры, бетона) — prestresing
    преде́льное напряже́ние — ultimate [limit, breaking] stress
    напряже́ние при изги́бе — bending stress
    напряже́ние при круче́нии — torsional [twisting] stress
    напряже́ние при переги́бе ( в корпусе судна) — hogging stress
    напряже́ние при проги́бе ( в корпусе судна) — sagging stress
    напряже́ние при разры́ве — rupture stress
    напряже́ние при растяже́нии — tensile stress
    напряже́ние при сдви́ге — shear(ing) stress
    напряже́ние при сжа́тии — compressive stress
    напряже́ние при скру́чивании — torsional stress
    напряже́ние при сре́зе — shearing stress
    напряже́ние при уда́ре — impact stress
    пробивно́е напряже́ние ( изоляции) — breakdown [disruptive, puncture] voltage
    напряже́ние пробо́я (в полупроводниковых приборах, разрядниках) — break-down voltage
    напряже́ние пробо́я, динами́ческое — dynamic break-down voltage
    напряже́ние пробо́я, стати́ческое — static break-down voltage
    напряже́ние проко́ла ( в микросплавных транзисторах) — punch-through [reach-through] voltage
    напряже́ние промы́шленной частоты́ — commercial-frequency [power-frequency] voltage
    просто́е напряже́ние — simple stress
    прямо́е напряже́ние полупр.forward voltage
    псофометри́ческое напряже́ние — psophometric voltage
    напряже́ние развё́ртки — sweep voltage
    разруша́ющее напряже́ние — breaking stress
    разрывно́е напряже́ние — rupture stress
    напряже́ние разря́да, коне́чное (в аккумуляторах, элементах) — final voltage
    напряже́ние рассогласова́ния ( в системах регулирования) — error voltage
    расчё́тное напряже́ние — design stress
    реакти́вное напряже́ние — reactive voltage
    напряже́ние сби́вки нуля́ ( в сельсинах) — anti-stickoff voltage
    напряже́ние се́ти — брит. mains voltage; амер. supply-line voltage
    напряже́ние се́тки ( в радиолампах) — grid potential, grid voltage
    рабо́тать при положи́тельном напряже́нии се́тки — operate [run] a tube with the grid positive
    напряже́ние сигна́ла — signal voltage
    напряже́ние [m2]сигна́ла выделя́ется на сопротивле́нии нагру́зки RHthe signal voltage is developed across the load resistor RL
    синфа́зное напряже́ние ( в дифференциальных усилителях) — common-mode voltage
    напряже́ние синхрониза́ции — sync voltage
    ска́лывающее напряже́ние — cleavage stress
    сло́жное напряже́ние — combined stress
    напряже́ние смеще́ния — bias voltage
    получа́ть напряже́ние смеще́ния за счёт протека́ния като́дного то́ка че́рез рези́стор — derive [develop] bias voltage by the passage of cathode current through a resistor
    напряже́ние смыка́ния ( в транзисторах) — punch-through [reach-through] voltage
    напряже́ние сраба́тывания ре́ле — operate voltage (не путать с рабо́чим напряже́нием)
    средневы́прямленное напряже́ние (напр. синусоидального тока) — half-period average voltage
    напряже́ние стабилиза́ции ( в рабочем диапазоне тока) — stabilizing voltage
    напряже́ние сцепле́ния — bond stress
    напряже́ние та́ктовой частоты́ — clock voltage
    тангенциа́льное напряже́ние — tangential stress
    температу́рное напряже́ние — temperature stress
    теплово́е напряже́ние — beat [thermal, temperature] stress
    терми́ческое напряже́ние — thermal [temperature, beat] stress
    напряже́ние то́почного простра́нства — beat liberated (by fuel) per cu.m. per hour
    тормозя́щее напряже́ние — breaking [retarding] voltage
    напряже́ние трениро́вки
    1. ( в радиолампах) pre-burn [ageing] voltage
    2. т. над. burn-in voltage
    напряже́ние тро́гания ( в электрической машине) — breakaway voltage
    уде́льное напряже́ние — specific stress
    управля́ющее напряже́ние — control voltage
    упру́гое напряже́ние — elastic stress
    уса́дочное напряже́ние — shrinkage stress
    ускоря́ющее напряже́ние — accelerating voltage
    уста́лостное напряже́ние — fatigue stress
    напряже́ние устране́ния ло́жного нуля́ ( в сельсинах) — anti-stickoff voltage
    фа́зовое напряже́ние — phase voltage
    фокуси́рующее напряже́ние — focusing voltage
    напряже́ние формова́ния напряже́ние — forming voltage
    напряже́ние холосто́го хо́да — ( между двумя зажимами электрической цепи) open-circuit voltage; ( электрооборудования) no-load voltage
    хрони́рующее напряже́ние — timing voltage
    цепно́е напряже́ние — membrane stress
    цикли́ческое напряже́ние — cyclic(al) stress
    ша́говое напряже́ние
    напряже́ние шу́мов — noise voltage
    напряже́ние электро́нного лу́ча — beam voltage
    электростати́ческое напряже́ние — electrostatic pressure
    электрострикцио́нное напряже́ние — piezoelectric stress
    эффекти́вное напряже́ние — r.m.s. [effective] voltage

    Русско-английский политехнический словарь > напряжение

  • 9 Fibreglas

    Fibreglas textile fibres are produced by two methods, the continuous filament process and staple fibre process. In each process glass marbles, made from melted and refined raw materials are remelted in small electrical furnaces, each of which has many small holes in the base of the melting chamber, through which the molten glass flows in fine streams by gravity. In the continuous filament process more than 100 filaments are drawn simultaneously and gathered into a thread or strand. The strand is attached to a high-speed winder that, as it draws the strand, attentuates each stream of molten glass to a fraction of the diameter of the hole through which it emerges. In the staple fibre process the streams of molten glass are struck by jets of high-pressure air or steam which attentuate the glass into fibres varying in length from 8-in. to 15-in. These fibres are driven on to a revolving drum on which they form a web, which is gathered from the drum and wound on to a tube in the form of a sliver. Strands of either continuous filament or staple fibres are twisted and plied into yarns on standard textile machinery. Fibreglas yarns are particularly suitable where fire-proofness, resistance to acids or other chemicals other than alkalis is demanded. Uses include electrical yarns, cords, tapes, cloths and sleevings which form the basis for a plain and varnished or impregnated electrical insulation material; chemical filter fabrics, anode bags used in electroplating, wicking for oil lamps and stoves, pump diaphragms, special fabrics for resisting high-temperature fumes and acids, facing materials for insulating or acoustical blankets, also rubber-coated, acid-proof and waterproof fabrics. Decorative uses include draperies, shower curtains, tablecloths, bedspreads, lamp shades and some apparel accessories, such as men's neckties. Also decorative work in architecture, dress fabrics, particularly for fancy effects, non-stretching cord for use in radio indicating dials, bookbinding, fire-screens, etc.

    Dictionary of the English textile terms > Fibreglas

  • 10 Dickson, J.T.

    [br]
    b. c.1920 Scotland
    [br]
    Scottish co-inventor of the polyester fibre, Terylene.
    [br]
    The introduction of one type of artificial fibre encouraged chemists to look for more. J.T.Dickson and J.R. Whinfield discovered one such fibre in 1941 when they derived polyester from terephthalic acid and ethylene glycol. Dickson, a 21-year-old Edinburgh graduate, was working under Whinfield at the Calico Printers' Association research laboratory at Broad Oak Print Works in Accrington. He was put onto fibre research: probably in April, but certainly by 5 July 1941, a murky-looking resin had been synthesized, out of which Dickson successfully drew a filament, which was named "Terylene" by its discoverers. Owing to restrictions imposed in Britain during the Second World War, this fibre was developed initially by the DuPont Company in the USA, where it was marketed under the name "Dacron". When Imperial Chemical Industries (ICI) were able to manufacture it in Britain, it acquired the brand name "Terylene" and became very popular. Under the microscope, Terylene appears identical to nylon: longitudinally, it is completely devoid of any structure and the filaments appear as glass rods with a perfectly circular cross-section. The uses of Terylene are similar to those of nylon, but it has two advantages. First, it can be heat-set by exposing the fabric to a temperature about 30°C higher than is likely to be encountered in everyday use, and therefore can be the basis for "easy-care" clothing such as drip-dry shirts. It can be blended with other fibres such as wool, and when pressed at a high temperature the creases are remarkably durable. It is also remarkably resistant to chemicals, which makes it particularly suitable for industrial purposes under conditions where other textile materials would be degraded rapidly. Dickson later worked for ICI.
    [br]
    Further Reading
    For accounts of the discovery of Terylene, see: J.R.Whinfield, 1953, Textile Research Journal (May). R.Collins, 1991, "Terylene", Historian 30 (Spring).
    Accounts of the introduction of svnthetic fibres are covered in: D.S.Lyle, 1982, Modern Textiles, New York.
    S.R.Cockett, An Introduction to Man-Made Fibres.
    RLH

    Biographical history of technology > Dickson, J.T.

  • 11 подогреватель

    1) General subject: fore hearth, fore-hearth
    3) Military: (pre) economizer, (pre) heater, (pre) heating apparatus
    4) Engineering: calorizator, cooker, economizer, filament (катода), forewarmer, heat booster, heater, heating apparatus, reheater, warmer, waste gas heater
    5) Construction: batch heater (камня и песка для бетона), boron concentrate cooler
    6) Automobile industry: temperature booster
    7) Metallurgy: live steam heater
    9) Coolers: heating element
    10) Drilling: heating unit
    11) Polymers: calorisator
    12) Chemical weapons: (на трубопроводе) line heater
    14) Karachaganak: feed pre-heater
    15) Electrical engineering: heater (катода)
    16) Cement: heating device

    Универсальный русско-английский словарь > подогреватель

  • 12 Heizfadentemperatur

    Heizfadentemperatur f filament [heater] temperature

    Deutsch-Englisch Wörterbuch der Elektrotechnik und Elektronik > Heizfadentemperatur

  • 13 Hunter, Matthew Albert

    SUBJECT AREA: Metallurgy
    [br]
    b. 9 November 1878 Auckland Province, New Zealand
    d. 24 March 1961 Troy, New York, USA
    [br]
    New Zealand/American technologist and academic who was a pioneer in the production of metallic titanium.
    [br]
    Hunter arrived in England in 1902, the seventh in the succession of New Zealand students nominated for the 1851 Exhibition science research scholarships (the third, in 1894, having been Ernest Rutherford). He intended to study the metallurgy of tellurides at the Royal School of Mines, but owing to the death of the professor concerned, he went instead to University College London, where his research over two years involved the molecular aggregation of liquified gases. In 1904–5 he spent a third year in Göttingen, Paris and Karlsruhe. Hunter then moved to the USA, beginning work in 1906 with the General Electric Company in Schenectady. His experience with titanium came as part of a programme to try to discover satisfactory lamp-filament materials. He and his colleagues achieved more success in producing moderately pure titanium than previous workers had done, but found the metal's melting temperature inadequate. However, his research formed the basis for the "Hunter sodium process", a modern method for producing commercial quantities of titanium. In 1908 he was appointed Assistant Professor of Electrochemistry and Physics at Rensselaer Polytechnic Institute in Troy, New York, where he was to remain until his retirement in 1949 as Dean Emeritus. In the 1930s he founded and headed the Institute's Department of Metallurgical Engineering. As a consultant, he was associated with the development of Invar, Managanin and Constantan alloys.
    [br]
    Principal Honours and Distinctions
    1851 Great Exhibition science research scholar 1902–5. DSc London University 1904. American Die Casting Institute Doehler Award 1959. American Society for Metals Gold Medal 1959.
    Bibliography
    1910, "Metallic titanium", Journal of the American Chemistry Society 32:330–6 (describes his work relating to titanium production).
    Further Reading
    1961, "Man of metals", Rensselaer Alumni News (December), 5–7:32.
    JKA

    Biographical history of technology > Hunter, Matthew Albert

См. также в других словарях:

  • filament temperature — kaitinamojo siūlo temperatūra statusas T sritis radioelektronika atitikmenys: angl. filament temperature vok. Glühfadentemperatur, f rus. температура нити накала, f pranc. température de filament, f …   Radioelektronikos terminų žodynas

  • température de filament — kaitinamojo siūlo temperatūra statusas T sritis radioelektronika atitikmenys: angl. filament temperature vok. Glühfadentemperatur, f rus. температура нити накала, f pranc. température de filament, f …   Radioelektronikos terminų žodynas

  • Filament winding — is a fabrication technique for creating composite material structures. The process involves winding filaments under varying amounts of tension over a male mould or mandrel. The mandrels rotates while a carriage moves horizontally, laying down… …   Wikipedia

  • Temperature — This article is about the thermodynamic property. For other uses, see Temperature (disambiguation). A map of global long term monthly average surface air temperatures i …   Wikipedia

  • Thin filament pyrometry — (TFP) is an optical method used to measure temperatures. It involves the placement of a thin filament in a hot gas stream. Radiative emissions from the filament can be correlated with filament temperature. Filaments are typically Silicon carbide… …   Wikipedia

  • Ampoule à filament — Lampe à incandescence classique Pour les articles homonymes, voir Lampe à incandescence. Ampoule ancienne à filament de carbone. L’ampoule à incandescence traditionnelle …   Wikipédia en Français

  • Color temperature — The CIE 1931 x,y chromaticity space, also showing the chromaticities of black body light sources of various temperatures (Planckian locus), and lines of constant correlated color temperature. Color temperature is a characteristic of visible light …   Wikipedia

  • High temperature insulation wool — Microscopic close up of ceramic fibre …   Wikipedia

  • Sonde de temperature — Sonde de température Les sondes de température sont des capteurs permettant de transformer l effet du réchauffement ou du refroidissement sur leurs composants en signal électrique. Jusqu à l invention du thermoscope de Galilée, les hommes étaient …   Wikipédia en Français

  • Sonde de température — Les sondes de température sont des capteurs permettant de transformer l effet du réchauffement ou du refroidissement sur leurs composants en signal électrique. Jusqu à l invention du thermoscope de Galilée, les hommes étaient incapables de… …   Wikipédia en Français

  • Disappearing filament pyrometer — The disappearing filament pyrometer is an optical pyrometer, in which comparison is made between two bright objects to determine temperature. More information is available from the suppliers http://www.spectrodyne.com/ and… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»